Lecture #13a

Shear Design of R/C Beams

Instructor:

Andreï M. Reinhorn P.E. Ph.D.
Professor of Structural Engineering

Shear Flexure Effects

- Flexure and Shear Diagrams:

- Acting Stresses in Beams

\[f_x, f_y, f_{xy} \]

different at each individual point in section.
Shear Flexure Effects

- Principal stresses:
 \[f_{ld} = \frac{f_m}{2} \pm \sqrt{\left(\frac{f_m}{2}\right)^2 + f_v^2} \]

- Typical cracking due to principal tension.

Shear Stresses

(b) Actual shear stresses

Vertical distribution Note: Maximum occurs at the neutral axis, usually in the web of a beam:
Shear Capacity Mechanism

(c) Shear Capacity Mechanism

Failure mechanism:

- V_c carried by compression
- $V_c = \text{concrete resistance}$
- Carried by friction aggregate interlock
- Carried by 'dowel' action
- $V_s = \text{(shear) steel resistance}$

Total resistance: Concrete + Steel Resistance

Mohr Circle - Principal Stresses

Mohr Circle - Principle

$\frac{f_x}{2} + \sqrt{\frac{f_x^2 + f_y^2}{2}} = f_c$

Prof. Andrei M. Reinhorn
Concrete Resistance

\[f_{u,c} = 1.9 \sqrt{f_{c}'} + 2500p\frac{V_u d}{M_u} \leq 3.5 \sqrt{f_{c}'} \]

Extended Resistance

Notation as agreed: \(M_u \) = ultimate/nominal moment capacity, \(V_u \) = ultimate shear capacity
Requires iterations since \(V_u \) is not known prior to design.

\[f_{u,c} = 0.8 + 100p \sqrt{f_{c}'} \leq 2 \sqrt{f_{c}'} \]

Maximum resistance

Easy to use. Does not require much iteration from final design.

[Note: Axial loads increase capacity. Extended resistance under influence of axial loads given in tables — see codes.]
See next page

Concrete Shear Strength

Table 13.1 EFFECT OF AXIAL LOAD ON THE SHEAR STRENGTH OF MEMBERS WITHOUT SHEAR REINFORCEMENT—ACI CODE

<table>
<thead>
<tr>
<th>Simplified Method</th>
<th>More Detailed Method</th>
</tr>
</thead>
</table>
| **Bending only** | Formula (11-3), 11.3.1.1
\(V_e = 15 \sqrt{f_{c}'} d \)
\(\leq 2.55 \sqrt{f_{c}'} d \)
\(V_u = \left(1.9 \sqrt{f_{c}'} + 2500p \frac{V_d d}{M_u} \right) \frac{h_d}{d} \)
\(\leq 3.5 \sqrt{f_{c}'} d \)
\(V_d/M_u \) not to exceed unity |

Bending and axial compression
Formula (11-4), 11.3.2.1
\(V_e = 6 \left(1 + \frac{N_u}{5000d} \right) \sqrt{f_{c}'} d \)
\(N_u = \frac{4h - d}{d} \)
Use \(N_u \) for \(M_u \) in Formula (11-4)
\(V_d/M_u \) has no limitation
Formula (11-5), 11.3.2.2
\(V_e \leq 35 \sqrt{f_{c}'} d \left(1 + \frac{N_u}{5000d} \right) \)
\(V_u = \frac{35 \sqrt{f_{c}'} d \left(1 + \frac{N_u}{5000d} \right)}{N_c} \)
\(N_c \) is positive for compression and \(N/A_d \) is in psi |

Bending and axial tension
11.3.1.3
\(V_e = 6 \)
Design shear reinforcement for total shear
Formula (11-6), 11.3.2.3
\(V_e = 2 \left(1 + \frac{N_u}{5000d} \right) \sqrt{f_{c}'} d \)
\(N_u \) is negative for tension and \(N/A_d \) is in psi

Prof. Andrei M. Reinhorn
Shear Strength of Re-bars

- Number of bars crossing diagonal crack:
 \[n = \frac{d + \frac{d'}{\tan \alpha}}{s} \]
 (1)

- Strength of bars crossing crack:
 \[V_{s}^{\text{ud}} = n \cdot A \cdot f_y \]
 \((A_s = \text{cross sectional area of one bar}) \) (2)

Shear Strength of Re-bars

- Vertical strength of reinforcement:
 \[V_s = V_s^{\text{ud}} \cdot \sin \alpha \]
 (3)

- Total Shear Resistance [combining (1), (2), and (3)]
 \[V_s = \frac{A_s \cdot f_y \cdot d}{s} \left(\sin \alpha + \cos \alpha \right) \]
Total Shear Force Capacity

\[V_n = V_u = V_c + V_s \]

- Concrete strength
- Reinforcement strength

\[V_c = f_{v,c} \cdot b \cdot d \]

\[V_s = \frac{A_v f_y d}{s} (\sin \alpha + \cos \alpha) \]

Total Shear Stress Capacity

\[f_v = \frac{V}{bd} \]

\[f_v = f_{v,c} + f_{v,s} \]

\[f_{v,s} = \frac{V_s}{bd} = \frac{A_v f_y}{b \cdot s} (\sin \alpha + \cos \alpha) \]

\[f_{v,c} \approx 0.8 + 100 \rho \sqrt{f' c} \quad \leq 2 \sqrt{f_c} \]
Shear Reinforcement (1)

(a) Stirrups (Economical: Labor – More Materials)

\[f_{v,s} = \frac{mA_v f_y}{b \cdot s} (\sin \alpha + \cos \alpha) \]

Shear Reinforcement (2)

(b) Bent Bars (Economical: Materials – More Labor)

\[f_{v,s} = \frac{mA_v f_y}{b \cdot s} (\sin \alpha + \cos \alpha) \]