CONTROL OF SLIDING-ISOLATED BUILDINGS USING SLIDING-MODE CONTROL

By J. N. Yang, Fellow, ASCE, J. C. Wu, A. M. Reinhorn, and M. Riley

ABSTRACT: Based on the theory of continuous sliding-mode control, control methods are presented for seismic-excited buildings isolated by a frictional-type sliding-isolation system. The dynamic behavior of the building equipped with a base-sliding-isolation system is highly nonlinear, and the sliding-mode—control method is ideal for such nonlinear systems. In addition to full-state-feedback controllers, a simple static-output-feedback controller using only the measured information from a few sensors installed at strategic locations without an observer is presented. The continuous sliding-mode controllers presented do not have undesirable chattering effect. Simulation results for an eight-story building indicate that (1) the control methods are robust; and (2) the control performance is outstanding. A shaking-table experimental program was conducted to verify the proposed static output control method. For the shaking-table tests, a three-story quarter-scale building model was mounted on a base mat that was supported by four frictional bearings. Experimental test results indicate that the control performance is quite remarkable, although a slight degradation was observed due to noise pollution and system time delays.

INTRODUCTION

Recently, aseismic hybrid protective systems have received considerable attention. For the hybrid protective system consisting of sliding-isolation system and actuators, the sliding isolators are used to reduce the ground motion transmitted to the building, whereas the actuators are used to reduce the response of the building, or protect the base sliding system, or both (e.g., Nagarajah et al. 1992, 1993; Reinhorn et al. 1993a,b). Since the dynamic behavior of base-sliding isolators is highly nonlinear, the use of such a hybrid protective system involves active control of nonlinear systems. Various control methods have been investigated for such a hybrid system including active control (Yang et al. 1992, 1993), frictional force control (e.g., Reinhorn et al. 1993a,b), instantaneous optimal control (Yang et al. 1992), dynamic linearization (e.g., Riley et al. 1993; Yang and Riley 1994a), and fuzzy-set control (e.g., Reinhorn et al. 1993a,b; Riley et al. 1993). Recently, the method of sliding-mode control (SMC) has been suggested by Yang et al. (1993) for this type of hybrid protective systems. While control theories for linear structures are well developed and active control systems have been installed in full-scale linear structures (e.g., Soong 1990), investigations are needed to explore promising control methods that are effective and robust for applications to control of nonlinear systems, such as the sliding-isolated buildings.

Based on the theory of VSS or SMC (e.g., Utkin 1992; Young 1993), control methods are presented in this paper for sliding-isolated buildings subjected to earthquake excitations. The theory of VSS or SMC was developed for robust control of uncertain nonlinear systems, and therefore is ideal for applications to control sliding-isolated buildings. In particular, continuous sliding-mode controllers are presented, which do not have undesirable chattering effect. For practical implementations of control systems in tall buildings, it may not be possible to install all sensors necessary to measure the full state vector because of the large number of degrees of freedom involved. On the other hand, an observer may require a significant amount of on-line computational effort, resulting in a system time delay. In this paper, static-output-feedback controllers using only the measured information from a few sensors installed at strategic locations without an observer are also presented to facilitate the practical implementations. Simulation results for a sliding-isolated eight-story building indicate that not only are the control methods robust but their performance is outstanding as well.

A shaking-table experimental test program was conducted at the National Center for Earthquake Engineering Research (NCEER), Buffalo, N.Y., to verify a static-output-feedback control method presented. The test specimen used was a three-story, quarter-scaled building model that was used extensively (e.g., Chung et al. 1989; Dyke et al. 1994; Reinhorn et al. 1993b; Yang et al. 1993, 1994c). This scaled building model was mounted on a base mat that was supported by four frictional sliding bearings. The sliding bearings were made of Teflon/stainless-steel plates. Three different earthquake records—El Centro, Hachinoke, and Pacoima—were used as the input excitations. Experimental results show slight degradations of the control performance as compared with the ideal simulation results due to noise pollution and system time delays. Nevertheless, the control performance demonstrated by experimental results is quite satisfactory.

EQUATION OF MOTION OF STRUCTURAL SYSTEM

Consider an n-degree-of-freedom linear building structure equipped with a base-sliding-isolation system and actuators, as shown in Fig. 1. The vector equation of motion for the superstructure subjected to a one-dimensional earthquake ground motion is given by

\[
M\ddot{x}(t) + C\dot{x}(t) + Kx(t) = -\xi y_d(t)
\]

in which \(X(t) = (x_1, x_2, \ldots, x_n)' = \text{an n-vector with } x_i(t)\text{ being the drift of the } i\text{th story unit}; M, C, \text{ and } K\text{ are the (non) mass, damping, and stiffness matrices, respectively, for the superstructure}; \xi = (m_1, m_2, \ldots, m_n)' = \text{an n-vector with } m_i \text{ being the mass of } i\text{th floor}; y_d(t) = \text{the absolute displacement of the base sliding system}; \text{ and a prime denotes the transpose of either a vector or a matrix. The equation of motion for the base-sliding system is given by}
2) linear elastic system matrix; \(B = \) a \(2n + 2 \) vector, and \(E(t) = \) a \(2n + 2 \) excitation vector.

\[
\begin{align*}
Z(t) = & \begin{pmatrix} \tilde{x}(t) \\ \dot{\tilde{x}}(t) \end{pmatrix} \\
A = & \begin{bmatrix} 0 & I \\ -M^{-1}\hat{K} & -M^{-1}\hat{C} \end{bmatrix} \\
E(t) = & B_0 x_0(t) \\
\tilde{x}(t) = & (x_n, \ldots, x_1, y_0)' \\
B = & \begin{pmatrix} 0, 0, \ldots, -\frac{1}{m_n} \frac{1}{m_0} \end{pmatrix}'
\end{align*}
\]

in which \(\hat{M}, \hat{C} \) and \(\hat{K} = (n + 1) \times (n + 1) \) mass, damping, and stiffness matrices of the entire structural system, respectively. These matrices can easily be determined from (1) and (2).

SLIDING-MODE CONTROL

Design of Sliding Surface

The first step in the sliding-mode--control method is to design the sliding surface (or switching surface) on which the response is stable. Since the coefficient matrices for both \(u(t) \) and \(f(t) \) are identical in (6), i.e., \(B \), the nonlinear frictional force \(f(t) \) appears only in the equivalent control force on the sliding surface. Thus, Yang et al. (1994b) have shown that the sliding surface \(S = 0 \) is a linear function of the state variables, i.e.

\[
S = PZ = 0
\]

in which \(P = \) a \(2n + 2 \) row vector to be determined such that the motion on the sliding surface is stable. One systematic approach for the determination of the row vector \(P \) is to convert the state equation of motion into the so-called regular form (e.g., Utkin 1992). Then, either the method of pole assignment or the linear-quadratic-regulator (LQR) method can be used for the determination of \(P \). In using the LQR method, \(P \) is determined by minimizing the integral of a quadratic function

\[
J = \int_0^\infty Z(t)'QZ(t) dt
\]

in which \(Q = \) a \((2n + 2) \times (2n + 2) \) positive definite matrix. Methods for determining the sliding surface or the \(P \) vector using either the LQR method or pole assignment are described in detail in Utkin (1992) and Yang et al. 1994b).

Design of Controller Using Lyapunov Direct Method

The next step in sliding-mode control is to construct the controller to drive the state trajectory into the sliding surface. To achieve this goal, we consider a Lyapunov function

\[
V = 0.5SS
\]

The sufficient condition for the sliding mode to occur is given by \(V = SS \leq 0 \). Substituting \(S = PZ \) into (10), taking the derivative and using the state equation of motion, (6), one obtains

\[
\dot{V} = \lambda (u - G)
\]

in which \(\lambda \) and \(G = \) scalars, defined by

\[
\lambda = \text{SPB}; \quad G = -(PB)'P(\text{AZ} - BF + E)
\]
For $V \leq 0$, a possible continuous sliding mode controller is given by Zhou and Fisher (1992):

$$u(t) = G - \delta \lambda$$ (13)

in which $\delta \geq 0$ is the sliding margin. Substitution of (13) into (11) leads to $V = -\delta \lambda^2 \leq 0$.

To examine the sliding mode controller, we substitute $u(t)$ in (13) into the state equation of motion, (6), and perform detailed manipulations using (7a)–(7e). The resulting closed-loop system is obtained as follows

$$Z(t) = [A - B(\delta - 1)P]A - \delta BB'PA^T]Z(t)$$ (14)

As (14) shows, the earthquake excitation has been completely compensated and hence the response state vector is zero. As a result, the controller in (13) completely compensates the structural response in the theoretical sense. In reality, however, a complete compensation of the response is not possible due to possible system time delays, such as the sampling rate in measuring the response quantities. Simulation results in this regard will be presented later.

Rather than a complete compensation for the response, it may be desirable to leave some restoring forces in the bearings for restraining purposes. In this connection, the following controller with a partial compensation can be used

$$u(t) = \alpha^* G - \delta \lambda$$ (15)

in which $0 \leq \alpha^* \leq 1$. The stability of such a controller has been shown in Yang et al. (1994b).

STATIC OUTPUT FEEDBACK

The controller presented in the previous section requires a full-state feedback either through measurements or from an observer. For practical implementations of control systems in tall buildings, it may not be possible to install all sensors to measure the full state vector, because of the many degrees of freedom involved. On the other hand, an observer may require a significant amount of on-line computational efforts resulting in a system time delay. From the practical implementation standpoint, it is highly desirable to establish static-output-feedback controllers using only the information measured from a limited number of sensors installed at strategic locations without an observer. A static-output-feedback controller was presented by Yang et al. (1994b) for control of a general nonlinear structure as follows.

Let \dot{Z}_a be a $(2n + 2)$-dimensional modified observation (output) state vector consisting of all measured (output) state variables and zero elements for those state variables that are not measured, i.e., \dot{Z}_a is obtained from Z by setting state variables that are not measured to zero. Then, a stable static-output controller is given by Yang et al. (1994b).

$$u(t) = \dot{G} - \delta \lambda$$ (16)

in which

$$\lambda = \dot{Z}_a^T P \dot{Z}_a; \quad \dot{G} = -(PB)^T P(A \dot{Z}_a - \beta f + E)$$ (17)

Simple Static-Output-Feedback Controller

To estimate the frictional force developed in the sliding bearings, both the displacement $x_0 = y_0 - x_0$ and the velocity $\dot{x}_0 = y_0 - \dot{x}_0$ of the sliding bearings should be measured. A simple static-output-feedback controller using only the available information of y_0, \dot{y}_0, x_0, and \dot{x}_0 is obtained as follows. In this case, the sliding surface becomes

$$S = p_1 y_0 + \dot{y}_0$$ (18)

in which p_1 is a positive number to guarantee the stability of the sliding surface. Then, the sliding surface P and the modified observation state vector \dot{Z}_a are given by

$$P = (0, 0, \ldots, p_1, 0, 0, \ldots, 1); \quad \dot{Z}_a = (0, 0, \ldots, y_0, 0, 0, \ldots, y)$$ (19)

Substituting (18) and (19) into (16) and (17), one obtains a simple output controller

$$u(t) = \dot{G} - \delta \lambda$$ (20)

in which

$$\dot{G} = -m_p y_0 + \dot{y}_0/m_a$$ (21a)

$$\lambda = p_1 y_0 + \dot{y}_0/m_a$$ (21b)

The simple output controller given by (20) and (21) is very plausible for practical implementations, since only y_0, \dot{y}_0, x_0, and \dot{x}_0 should be measured.

A careful examination for both static-output controllers presented in (16)–(21) indicates that the response of the closed-loop system is zero, since the earthquake excitation is also completely compensated. Again, due to possible system time delays, the performance of the simple static output controller in (20)–(21) will be demonstrated by simulation results later.

In the shaking-table test, however, it is necessary to limit the sliding displacement using the restraining system for safety considerations. As a result, instead of completely compensating the stiffness of the restraining system, a partial cancellation is made, and (20) and (21) are modified as

$$u(t) = G^* - \delta \lambda$$ (22)

in which

$$G^* = -m_p y_0 + \dot{y}_0/m_a$$ (23a)

$$\dot{G} = -m_p y_0 + \phi \delta \dot{y}_0/m_a$$ (23b)

where $0 \leq \phi \leq 1$. The controller given by (22) and (23) can easily be shown to be stable by substituting it into the equations of motion, (1) and (2). This simple static output controller will be used in the experimental program. As Eq. (23) shows, the restraining system is completely compensated for $\phi = 1.0$. For $0 \leq \phi < 1$, the control performance will degrade due to the existence of the restraining system, as will be demonstrated in the experimental results later.

NUMERICAL SIMULATION

To demonstrate the application of the sliding-mode-control methods presented here, an eight-story shear-beam-type building equipped with sliding isolators, as shown in Fig. 1, is considered. The properties of the structure are as follows:

(1) The mass of each floor is identical with $m_i = m = 345.6$ t; (2) the elastic stiffnesses of the eight-story units are $k_i(i = 1, 2, \ldots, 8) = 3.4 \times 10^5, 3.26 \times 10^5, 2.85 \times 10^5, 2.69 \times 10^5, 2.43 \times 10^5, 2.07 \times 10^5, 1.69 \times 10^5, \text{ and } 1.37 \times 10^5 \text{kN/m}$; and (3) the viscous damping coefficients for each story unit are $c_i = 490, 467, 410, 386, 349, 298, 243, \text{ and } 196 \text{ kN s/m}$. The damping coefficients result in a damping ratio of 0.38% for the first vibrational mode with the fundamental frequency of 5.24 rad/s.

For this shear-beam-type building (superstructure), elements of matrices $M, C, \text{ and } K_i [(1)]$ are given as follows: (1) $M(i, j) = m_{i-1}$ for $i = 1, 2, \ldots, n$ and $j = i, i + 1, \ldots, n$, and $M(i, j) = 0$ for $j < i$; (2) $C(i, j) = 0$ except $C(i, i) = c_{ii-1}$, for $i = 1, 2, \ldots, n$ and $C(i, i - 1) = -c_{i-1,i}$, for $i = 2, 3, \ldots, n$; and (3) $K(i, j) = 0$ except $K(i, i) = k_{ii-1}$, for $i = 1, 2, \ldots, n$, and $K(i, i - 1) = -k_{i-1,i}$, for $i = 2, 3, \ldots, n$.

A Teflon/stainless-steel sliding-isolation system is implemented...
Tabled text...
since the response quantities are further reduced. Comparisons of columns 2, 3, 6, and 7 indicate that structural response is reduced by one order of magnitude and the sliding displacement remains about the same.

We next consider the simple static output controller in (20)–(21) in which only the absolute response quantities of the base sliding system are measured, i.e., y_b and y_m, in addition to the earthquake ground motion, x_c and x_s. The sliding surface is given by (18) with $p_1 = 10$ per centimeter and $\delta = 1$ kN·kg·m/s in (20) is used. Again, the simple static output controller results in a complete compensation of the building response in a theoretical sense. With a sampling rate of 250 Hz, the peak-response quantities of the entire structural system in 30 s of the earthquake episode are presented in columns 8 and 9 of Table 1, designated as OF(I) for output feedback. Another design of the sliding surface in which $p_1 = 1.0$ per centimeter and $\delta = 1$ kN·kg·m/s is considered. With the same sampling rate, the corresponding peak-response quantities are shown in columns 10 and 11 of Table 1, designated as OF(II). When p_1 is larger (i.e., $p_1 = 10$ per centimeter), the pole of the sliding surface is shifted more to the left-hand side in the complex plane; however, the performance in reducing the interstory drifts and floor acceleration is not necessarily better.

The simulation results presented in columns 2–11 of Table 1 clearly demonstrate that with a reasonable sampling rate of 250 Hz (1) the performance of the continuous sliding-mode–control method is outstanding; and (2) the performance for the static-output-feedback controller, using only the measurements of the motion of the sliding-isolation system, compares favorably with that of the full state feedback.

It should be mentioned that the sliding-isolated building considered with $\mu_0 = 0.1$, $\mu_e = 0.05$, and $a_s = 0.2$ s/cm is identical to that considered in Yang et al. (1994a). Unfortunately, there was a typographical error in Yang et al. (1994a) in which a_w was misprinted as 0.5 s/cm. Suppose the characteristics of the frictional coefficient in (4) for the isolation system are as follows: $\mu_e = 0.1$, $\mu_e = 0.05$, and $a_s = 0.5$ s/cm. The same designs for the controller and the sliding surface for different cases presented in columns 2–11 of Table 1 are used. The corresponding simulation results for the peak response quantities of the building are presented in columns 13–22 of Table 1. As observed, the performances of the control designs for the upper and lower parts of Table 1 are almost identical.

As mentioned previously, the theory of variable structure system or sliding-mode control was developed for robust control of uncertain nonlinear systems. The static-output-feedback controller presented in (20) and (21) is independent of the properties of the building. Therefore, the simulation results presented in columns 8–11 of Table 1 are theoretically robust with respect to parametric uncertainties of the building. To examine the robustness of the full-state-feedback controller, we vary the stiffness of all story unit of the building by $\pm 30\%$. In other words, estimation errors of $\pm 30\%$ for the stiffness matrix K of the superstructure, (1), are used to design the sliding surface and the controller. The simulation results corresponding to the same design shown in columns 6 and 7 of Table 1 are presented in Table 2. Columns 2 and 3 of Table 2, corresponding to 0% uncertainty, are identical to columns 6 and 7 of Table 1. Table 2 demonstrates that the full-state-feedback controller is robust.

EXPERIMENTAL RESULTS

Shaking-table tests were conducted at NCEER. The same three-story quarter-scale building model described by Soong (1990) was mounted on a base mat that was supported by four sliding bearings made of Teflon/stainless-steel plates as shown in Fig. 3. Therefore, the entire structural model is a four-degree-of-freedom system. All the experimental setup, instrumentation, system identifications, and so on were reported by Reinborn et al. (1993b). A hydraulic actuator was installed on the shaking table to control the sliding bearings (see Fig. 3). Three different earthquake records, in which the frequency is scaled to 200% and the peak ground acceleration is scaled to the appropriate magnitude, were used as the input excitations.

TABLE 2. Robustness for Maximum Response Quantities of Eight-Story Building Equipped with Hybrid Sliding Bearings: 250-Hz Sampling Rate

<table>
<thead>
<tr>
<th>Story</th>
<th>χ_c (cm)</th>
<th>χ_m (cm/s²)</th>
<th>χ_c (cm)</th>
<th>χ_m (cm/s²)</th>
<th>χ_c (cm)</th>
<th>χ_m (cm/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>1</td>
<td>0.02</td>
<td>6</td>
<td>0.02</td>
<td>6</td>
<td>0.02</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
<td>0.01</td>
<td>3</td>
</tr>
</tbody>
</table>

FIG. 3. A Four-Degree-of-Freedom Scaled Model Equipped with Hybrid Control System

FIG. 4. Earthquake Excitations: (a) 0.34g El Centro Earthquake; (b) 0.23g Hachinohe Earthquake; (c) 0.40g Pacoima Earthquake
TABLE 3. Experimental Results for Maximum Response Quantities of Four-Degree-of-Freedom Sliding Isolated Building Model

<table>
<thead>
<tr>
<th>Cases</th>
<th>El Centro</th>
<th>Hachinohe</th>
<th>Pacoima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passive (1)</td>
<td>Hybrid (2)</td>
<td>Passive (3)</td>
</tr>
<tr>
<td>x_0 (mm)</td>
<td>21.386</td>
<td>34.650</td>
<td>24.003</td>
</tr>
<tr>
<td>x_1 (mm)</td>
<td>5.350</td>
<td>3.002</td>
<td>4.699</td>
</tr>
<tr>
<td>x_2 (mm)</td>
<td>5.357</td>
<td>2.743</td>
<td>5.563</td>
</tr>
<tr>
<td>x_3 (mm)</td>
<td>4.674</td>
<td>3.489</td>
<td>4.089</td>
</tr>
<tr>
<td>x_4 (mm)</td>
<td>7.671</td>
<td>5.182</td>
<td>6.629</td>
</tr>
<tr>
<td>x_5 (mm)</td>
<td>6.629</td>
<td>6.198</td>
<td>6.198</td>
</tr>
<tr>
<td>x_6 (mm)</td>
<td>7.620</td>
<td>5.639</td>
<td>7.595</td>
</tr>
<tr>
<td>x_7 (mm)</td>
<td>11.481</td>
<td>5.944</td>
<td>8.077</td>
</tr>
<tr>
<td>U (%)</td>
<td>—</td>
<td>12.4</td>
<td>—</td>
</tr>
</tbody>
</table>

FIG. 5. Interstory Drifts of Building with Passive Control (Solid Curve) and Hybrid Control (Dotted Curve) under El Centro Earthquake; (a) Top-Story Unit; (b) Second-Story Unit; (c) First-Story Unit

FIG. 6. Interstory Drifts of Building with Passive Control (Solid Curve) and Hybrid Control (Dotted Curve) under Hachinohe Earthquake; (a) Top-Story Unit; (b) Second-Story Unit; (c) First-Story Unit

These are 0.34g El Centro earthquake, 0.23g Hachinohe earthquake, and 0.4g Pacoima earthquake, as shown in Fig. 4.

The mass of each floor unit is given as follows: $m_i = \frac{1.14862}{6.5544} \text{ lb-sec}^2/\text{in.}$ (base mat), $m_i = 958 \text{ kg (5.4667 lb-sec}^2/\text{in.) for } i = 1, 2, 3, 4$. Two elastic springs were added to the sliding system as the restrainers and the total elastic stiffness is $k_s = 71,616.36 \text{ N/m (408.85 lb/in.)} [22]$. These elastic springs are added for precaution to prevent the test specimen from unexpected large slidings out of the buildings. The parameter values for the sliding bearings were obtained through the system identification as follows: $\alpha = 1.0$, $\gamma = 0.5$, $\eta = 3$, $D_s = 0.0254 \text{ mm (0.001 in.)}$, $\mu_x = 0.06$, $\mu_y = 0.03$, and $u_x = 0.09016 \text{ s/mm (2.29 sec/in.)} [4]$ and (5).

FIG. 7. Interstory Drifts of Building with Passive Control (Solid Curve) and Hybrid Control (Dotted Curve) under Hachinohe Earthquake; (a) Top-Story Unit; (b) Second-Story Unit; (c) First-Story Unit

FIG. 8. Comparison of Experimental Time Histories (Dotted Curve) and Simulation Results (Solid Curve) for Interstory Drifts under El Centro Earthquake; (a) Top-Story Unit; (b) Second-Story Unit; (c) First-Story Unit

The properties of the superstructures are also obtained through system identification given by Reinhold et al. (1993b).

To avoid heavy noise pollution and system time delays in the control operations, and to demonstrate the practical implementations of the proposed control algorithm, the simple static-output-feedback controller presented in (22) and (23) was used. Only the displacement y_d and velocity y_v of the sliding system as well as the shaking-table velocity y_s and displacement x_d, were measured and used for the control algorithm. The sliding surface is given by (18) with $p_i = 0.315$ per millimeter (8.0 per inch) $> 0. \phi = 0.8$ and $\delta = 0$ were used in the controller [22] and [23].

Within 30 s of the earthquake episode, the peak interstory drifts of the structure $x_i (i = 1, 2, 3)$, the absolute accelerations of each floor $x_i (i = 1, 2, 3)$, and the peak control force U are summarized in Table 3 for three different earthquake excitations. In Table 3, the peak-response quantities for the system (with sliding bearings) are designated as “passive”, whereas those for the system with active control are designated as “hybrid.” The percentage of the total system weight. Also shown in parentheses under “hybrid” are the percentages of reduction for the peak-response quantities relative to passive responses. Table 3 shows that the reduction of the maximum interstory drifts ranges from 37% to 50% whereas the reduction for the maximum floor accelerations is much less. Time histories of the interstory drifts for the three-story units of the building model are displayed in Figs. 5–7. In each figure, the solid curve represents the response of the passive system (without actuator), whereas the dotted curve denotes the response with hybrid control (actuator).

For every test series conducted, numerical simulations of the response quantities under ideal control environments were
performed. Time histories of the interstory drifts based on numerical simulations are presented as solid curves in Figs. 8–10 for different earthquake excitations. Also shown in these figures as dotted curves are the experimental records for comparison. The peak response quantities for the simulation results and the experimental data are summarized in Table 4 for comparison.

Because actuator dynamics, actuator-structure interaction and system time delay are not accounted for in the simulation, the differences between the experimental data and the simulation results are expected. In particular, the response of the building is quite sensitive to the system time delay, due to the fact that the motion of the sliding system switches from the sticking phase to the sliding phase and vice versa quite frequently. Consequently, experimental tests for control of sliding-isolated structures require elaborate efforts. Table 4 shows that the correlations for the peak-response quantities are quite satisfactory. The control performance for the simulation results is slightly better than that of the experimental data as expected. Figs. 8–10 show that the correlations for the time histories of the response quantities are also quite reasonable, except for the case of El Centro earthquake excitation, Fig. 8, where the deviation is more prominent. Based on the experimental results obtained here, the simple static output-feedback controller presented is quite promising for control of sliding-isolated buildings under seismic excitations.

CONCLUSIONS

Based on the theory of continuous sliding-mode control or variable structure system, control methods have been presented for applications to seismic-excited buildings isolated by frictional-type sliding bearings. The continuous sliding-mode controllers presented do not have possible chattering effects. In addition to full-state-feedback controllers, static-output-feedback controllers using only the measured information from a few sensors are also presented. These static output feedback controllers can be implemented readily in practical applications. Simulation results for an eight-story sliding-isolated building demonstrate that (1) the control methods presented are robust with respect to parametric uncertainties of the building; and (2) the performance of the simple static output feedback controller is comparable to that of the full-state-feedback controller.

A shaking-table experimental program, using a three-story quarter-scale building model, has been conducted to verify the simple static-output-feedback controller presented. Such a controller can be used for practical implementation of the hybrid control systems on full-scale buildings. The correlations for the peak-response quantities between the simulation results and experimental data are quite reasonable. The correlations for the response time histories can be improved by taking into account the actuator dynamics and actuator-structure interactions in the numerical simulations, and by using better sensing devices and instrumentations in the experiments. In addition, the performance of the control methods presented can be improved if the actuator dynamics and actuator-structure interaction are taken into account in the design of the sliding surface and controllers.

ACKNOWLEDGMENTS

The research was supported by the National Science Foundation through grants BCS-91-20128 and the National Center for Earthquake Engineering Research, NCEER-93-5123.

APPENDIX. REFERENCES

JOURNAL OF STRUCTURAL ENGINEERING / FEBRUARY 1996 / 185

