														Unit: g
			Desired (per AC156)					Achieved (experiment)						
		Test No.		$\begin{array}{c} Ground\\ Seismic\\ Coeff.\\ S_S^{-1} \end{array}$	$\frac{\text{Ground}}{\text{PGA}_{\text{H}}^2}$	Ground PGA _V ³	$\begin{array}{c} Target \\ Roof \\ FA_{H}^{4} \end{array}$	Target Roof FA _V ⁵	Roof (Frame) Center ⁶		Ceiling Grid Center ⁷			
	#	Collapse Level	Input	Hor.	Hor.	Vert.	Hor.	Vert.	х	у	Z	х	у	Z
		1		2	3	4	5	6	7	8	9	10	11	12
	2	NS1108K-275	x, z	2.75	0.73	0.49	1.17	0.49	1.80**	0.35	0.81	8.42	9.60*	5.20*
	3	NS1108L-275	х	2.75	0.73	0.49	1.17	0.49	1.89	0.25	0.77	7.59	3.86	1.27
	4	NS1108M-225	3D	2.25	0.60	0.40	0.96	0.40	1.42	1.72	0.83	4.48	4.89	1.23
	5	NS1108N-200	3D	2.00	0.53	0.36	0.85	0.36	1.19	1.48	0.85	4.85	8.50 [*]	1.81
	6	NS1108O-125	3D	1.25	0.33	0.22	0.53	0.22	0.76	0.97	0.73	3.11	3.39	0.80

0.96

0.75

1.17

1.07

(1.00

0.40

0.31

0.49

0.44

0.42)

1.39

1.02

1.85

1.70

1.47

0.90

0.89

1.21

1.15

1.07

1.66

1.23

2.27

1.99

1.79

5.30

3.15

6.16

4.57

5.06

8.20*

3.79

10.6

6.80

5.51

2.80

0.91

3.02

6.40

1.93

Table 1 Preliminary Test Results[†] – Desired/Achieved "Average Peak" Accelerations at Collapse[‡]

† These preliminary data shall be reviewed, reevaluated and reinvestigated.

2.25

1.75

2.75

2.50

0.60

0.47

0.73

0.67

0.40

0.31

0.49

0.44

⁴ Average Peak Accelerations: average of 10 maximum values from achieved histories. (Some of response accelerations of the ceiling grid had large spikes-peaks due to possible impact of the grid during the system collapse. Some of these values were not included in the calculation of the Ave. Factors).

** Test #2 target was Roof (Frame) Corner.

NS1108P-225

NS1108Q-175

NS1108R-275

NS1108S-250

Approx. Ave. Ratios $(3D^8)$

(normalized to FA_H)

7

8

9

10

3D

3D

3D

3D

The definition and the equation of "desired" parameters are as follows:

1. S_S = the mapped maximum earthquake spectral acceleration at short periods per AC156

$S_{DS_{H}} = 2/3 F_a S_s$	(1)
where S_{pq} is the design spectral response acceleration at short periods in the	e horizontal direction

where $S_{DS_{-H}}$ is the design spectral response acceleration at short periods in the horizontal direction, and F_a is the site coefficient taken as 1 in this calculation.

2. PGA_{H} = Peak Ground Acceleration in the Horizontal direction

$PGA_{H} = 0.4S_{DS_{H}}$	(2)
3. $PGA_V = Peak$ Ground Acceleration in the Vertical direction	
$PGA_{v} = 2/3 PGA_{H}$	(3)
4. FA_{H} = target Peak Roof/Floor Acceleration in the Horizontal direction	
$FA_{H} = 1.6 \cdot PGA_{H}$	(4)
5. FA_V = target Peak Roof/Floor Acceleration in the Vertical direction (Not amplified)	
$FA_{\nu} = PGA_{\nu}$	(5)

The "achieved parameters are the achieved quantities from the experimental data:

6. Roof (Frame) Center = Peak accelerations achieved from West and East Roof Centers (West+East)/2

7. Ceiling Grid Center = Peak accelerations achieved from the Ceiling Grid Center main runner East and West (West+East)/2

8. Approx. Ave. Ratios are calculated using 3D input test results only (i.e. Test #4 to #10).

								Unit: g		
				Desi	red (per AC	Achieved [‡] (experiment)				
Test No.			Ground Seismic Coeff. S _S ¹	$\begin{array}{c} Ground \\ S_{DS_H}{}^2 \end{array}$	$\begin{array}{c} Ground \\ S_{DS_V}{}^2 \end{array}$	${f Target} \\ {f Roof} \\ {f FS_H}^4 $	Target Roof FS _V ⁵	Roof (Frame) Center ⁶		
#	Collapse Level I	Input	Hor.	Hor.	Vert.	Hor.	Vert.	х	У	Z
	1		2	3	4	5	6	7	8	9
2	NS1108K-275	x, z	2.75	1.83	1.22	2.93	1.22	4.14*	0.91	1.65
3	NS1108L-275	Х	2.75	1.83	1.22	2.93	1.22	4.56	1.19	0.91
4	NS1108M-225	3D	2.25	1.50	1.00	2.40	1.00	3.33	3.41	1.53
5	NS1108N-200	3D	2.00	1.33	0.89	2.13	0.89	2.92	3.08	1.30
6	NS1108O-125	3D	1.25	0.83	0.56	1.33	0.56	2.04	2.48	1.06
7	NS1108P-225	3D	2.25	1.50	1.00	2.40	1.00	3.27	3.50	1.64
8	NS1108Q-175	3D	1.75	1.17	0.78	1.87	0.78	2.44	2.59	1.29
9	NS1108R-275	3D	2.75	1.83	1.22	2.93	1.22	3.97	4.29	1.95
10	NS1108S-250	3D	2.50	1.67	1.11	2.67	1.11	3.63	3.97	1.73
Coefficient Factors $(3D^7)$ (respect to S_S)			1.00	0.67	0.44	1.07	0.44	-	-	-
Appr	ox. Ave. Factors ((respect to FS _H)	'3D ⁸)	-	-	-	1.00	0.42	1.29	1.41	0.63

Table 2 Preliminary Test Results[†] – Desired/Achieved "Spectral Peak Accelerations"

[†] These preliminary data shall be reviewed, reevaluated and reinvestigated.

^{*} Achieved Spectral Peak Accelerations were calculated from the test data in the range of 0.1 to 30hz (horizontal) and the range of 0.1 to 15hz (vertical).

* Test #2 target was Roof (Frame) Corner.

The definition and the equation of "desired" parameters are as follows:

1. S_S = the mapped maximum earthquake spectral acceleration at short periods per AC156

2 C the design encoded as a second section of short nonic do in th	a hanimantal dinastian
$2 - N_{\rm DC} m = 100$ design spectral response acceleration at short periods in 10	e norizonial direction
2.57 $H = 100$ 0.001 $E = 0.000$ $E =$	

$S_{DS_{-H}} = 2/3 F_a S_s$	(6)
DS_R / U S	

where F_a is the site coefficient taken as 1 in this calculation.

3.
$$S_{DS_V}$$
 = the design spectral response acceleration at short periods in the vertical direction

$$S_{DS_V} = 2/3S_{DS_H}$$
(7)

4. FS_H = the target Roof/Floor spectral response acceleration in the Horizontal direction

$$FS_{H} = 1.6 \cdot S_{DS_{H}} \tag{8}$$

5. FS_V = the target Roof/Floor spectral response acceleration in the vertical direction (Not amplified) $FS_V = S_{DS_V}$ (9)

The "achieved parameters are the calculated quantities from the experimental data:

- 6. Roof (Frame) Center = Spectral peak accelerations from West and East Roof Centers (West+East)/2
- 7. Desired parameter-coefficient factors respect to S_s .
- 8. Approx. Ave. Factors are calculated using 3D input test results only (i.e. Test #4 to #10).